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ON EXPANSION OF THE POSSIBILITIES OF THE INTEGRAL 

TRANSFORMATION METHOD IN SOLVING PROBLEMS OF MECHANICS' 

G. Ia. POPOV 

The applicability of the integral transfarm method to a boundary value problem is 
related to whether the boundary conditions of this problem in the variable with res- 
pect to which the transformation is performed agree with the boundary conditions of 
the corresponding Sturm-Liouville problem. A method is proposed for transferring 
the integral transform method over to the case of boundary value problems when there 
is no such agreement. Moreover, the range of variation of the variable with respect 
to which the transformation is performed is smaller than the range of determination 
of the corresponding Stun-~iouvi~le problem, and the boundary condition of the 
boundary value problem is mixed. A method is indicated for transferring the mention- 
ed method to boundary value problems in multiconnected and complex domains whose ron- 
tours are inscribed in the coordinate mesh under consideration. The method is ill- 
ustrated in anti-plane and plane problems of elasticity theory. 

The aim and ideological side of the main content of the paper is convenient to be elucid- 
ated in application to boundary value problems for second order equations of general form (with 
separable variables) for the function ~5 U(Z,Y) 

T(Z) W)' i- F1 (y)(p+')' - 4(s) u - qx (y) u = 0 (0.1) 

(a~ < x < at+ b, < Y < a,) 

Here and below the primes denote derivatives with respect to the first variable, and the 
dots with respect to the second variable. 

It is known /l/ that to each integral transform which we write here in the general form 

(I is the contour in the complex variable plane, u(z) is a distribution function /I./), there 
corresponds a Sturm-Liouville problem 

r (pK')' - 9K = --hK (a,, <z < al) (0.3) 
Uj [kl = aj,K (aj, i’, + a$’ (aj, ?L) = 0 (i = f&j) 

with respect to the transformation kernel KE K(z, 8.). 

The known scheme of the integral transform method is based on agreement between the bound- 
ary conditions on the boundaries z= aj(j= 0,i) of the boundary value problem for (0.1) and the 
boundary conditions in (0.3). This permits /l/ reduction of the initial problem to a' one- 
dimensional boundary value problem in the transfonnant U&(Y) by multiplying (O.l)by r-l(z) K(z,X) 

and integrating by parts , if the boundary conditions on the boundaries y= bj (j=O, I) have the 
form 

'j Iu] = Bi.tr(~, bj)C B~,u' (-t, bj)= Ilj (2) 
(a,< I< aI, i = 0, if 

(0.4) 

i.e., are not mixed. 
The next step /l/ in the scheme of the integral transform method (we call it classical)is 

to solve the one-dimensional boundary value problem obtained and to use the inversion formula 
from (0.2). 

If the boundary conditions (0.4) on the boundaries y= bj become mixed, then the describ- 
ed scheme is dropped, there is no reduction to the one-dimensional boundary value problem,only 
the appropriate one-dimensional differential equation is used, its general solution is con- 
structed, and a general integral or series representation of the solution of the initial bound- 
ary value problem is obtained on this basis. Then the mixed boundary conditions are realized, 
which result in dual integral or series equations. Such an approach to the solution of bound- 
ary value problems is used extensively at this time (see /2-44/, say). 

There is a still greater deviation from the scheme of the integral transform method in 
situations when the boundary conditions on the boundary I= oj(j = 0,l) do not agree with the 
homogeneous Sturm-Liouville conditions (O-3), and even more so, if they turn out to be mixed. 
In such cases, general integral or series representations (151, say) which can be obtained 
either without integral transforms (the method of separation of variables) or /6J by specially 
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selected integral or series representations of solutions for simpler domains whose intersect- 

ions will form that under consideration, are used to satisfy the boundary conditions. 
There are also other (see /7.8/, for instance) approaches to the solution of mixed bound- 

ary value problems. 

A means is indicated here (the first steps on this road were apparently taken in /9,10/) 

for realizing the classical scheme described above for the integral transform method inapplica- 

tion to boundary value problems when the boundary conditions are mixed on the boundaries y= b, 

(I= U,i) while they do not agree with those described in (0.3) on the boundaries z = aj (j = 0, 1) . 
Moreover, they may even be mixed and the range of variation of the appropriate variable in 

(0.1) can be less than the range in which the Stun-Liouville problem is given. Besides, a 
method is indicated for transferring the classical scheme of the integral transform method to 

the case of multiconnected and complex domains. 
The method elucidated here combined with the approach developed in /li/ broadens the 

range of applicability of the classical scheme of the integral transform method. 

1, Let us consider a mixed boundary value problem for the equation (0.1) in the domain 

a, < x < a \ a,, b, < y CI< b, , i.e., the domain of the change in the variable r is less than 
the domain (a,, ai) on which the Sturm-Liouville problem (0.3) is given. 

In order not to complicate the situation, let us consider the boundary conditions on the 
boundaries X= ~0 and Y= b, to be homogeneous and not mixed, i.e., 

U" [ul = 0 (h, -;: Y < b,), V, [ul = 0 (a, < I < a,) (1.1) 

while we consider them mixed on the remaining boundaries. For instance, we give them in the 
following form on the boundary .r= a 

u- [ul = a,- u (a, y) + c(1-u’ (a, Y) = g_ (Y) (b, < y < b) 

Uf [ul = uo+ u (a, Y) + ai+u' (u, Y) = g+ (Y) (b < Y G b,) 

and on the boundary Y = b, as 

(1.2) 

(1.3) 

then previous conditions can be written thus 

a,& u (a, Y) + a,+~’ (a, Y) = gF + x+ (b, < Y < b,) (1.4) 

If the unknown functions x7(Y), 6, <y < b are introduced and we here consider 

x_, g_ = 0 (b <Y < b,), x+, g+ = 0 (b, < Y -==b) 

Analogously, by introducing the unknown functions qT(x), a,+;x< a and considering 

s-2 *- = 0 (c < 5 < a), s,, Q+ = 0 (a, < x <c) 

we write in place of (1.3) 

VT M = s* (x) + q+ (4 (a, < 5 < a) (1.5) 

The classical scheme of the integral transform method prescribes the reduction of the in- 

itial problem to a one-dimensional problem by using the integral transform (0.2). To perform 

this reduction, we consider u(x, y)s 0 in the case being selected for a(x<a, , and take 
the limit values from within the domain a, (a: (a,, b, (y (b, as the values of ~(5, Y) and 
its derivatives at the point x-a. 

Multiplying (0.1) by r-l (x) K (x, h) , we integrate by parts with respect to x in the 

segment Iu,,al (see /ll/). The subsequent calculation of (0.2), (0.3) and (1.1) converts (0.1) 

to the following: 
Lub = rl (p~ud)’ - (ql + h) uh = no (4 u (a, y) - “0 (a) u’ (G Y) (1.6) 
(0, <Y <b,> ~1 (a) = p (a) K' (a, A), "0 (4 = p (4 K (a. V) 

We eliminate values of the desired function and its derivative at ~=a from the right 

side of the equation obtained. To do this we solve the system (1.4) for the values mentioned 
by considering A = aI+ao- - a,,+al- # 0. It can be seen that the disturbance of this condition 
will result in a simpler situation when there is no point of boundary condition interchange 
on the boundary x =zz a. This particular case will also be considered below. Substituting 
the values ~(a, y) and ~‘(a, y) found in this manner into (1.6), we will have 

Lur (Y) = n+ [6_ (Y) -t x+ (Y)l - n- fx_ (Y) + g, (YN (1.7) 

(b, < y <b,, nf = A-‘p (a) U* IKI) 

Application of the integral transform (0.2) to the boundary conditions (1.5) reduces them 
to the form 
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Together with (1.7) these relationships show that the initial two-dimensional boundary value 
problem can be transformed to two versions of one-dimensional boundary value problems for the 
equation (1.7). In the first, the boundary conditions have the form 

v, [Ubl = 0, VI Iusl = v+ [c&l = .%+ + gh- (1.8) 

while in the second they should be taken in the form 

v, [U&l = 0, vr hl = v- hl = a- + qh+ 
Which of these variants is taken depends on whether it is more convenient to take 

*+ (4 
$_(s) or 

as the desired function. For instance, if q_(x) is taken as the desired function, 
then the boundary value problem (1.71, (1.8) should be solved. Constructing the basis system 
/ll/ of functions $O(Y),$l(Y) and the Green's function G(y,q) for it, we obtain the solution 
by means of the formula 

Using the inversion formula from (O.Z), we express the solution of the mixed boundary value 
problem formulated in terms of the unknown functions I*(Y), q_(x). Realization of the boundary 
conditions 

w. b) = l G (~9 rl) @+ k- (9) + x+ (s)l - (1.9) 

n- rx_h + g, (11111 dll -t $1 (!I) h+ -t $A-_) 

v- lul = s_ (x) (a. -< x < c) 

u- [ul = g_ (y) (b, < y < b), u+ Id = g, (!I) (h <Y -=z h) 
(1.10) 

results in a system of three integral equations in the functions mentioned. 
Let us indicate a case when this quantity of equations is reduced. Let the boundary con- 

dition 
u- M = g (Y) (hl 4 Y < h) (1.11) 

hold in place of the mixed conditions (1.2). It can be seen that in this case we should set 

g_ = g, X- = a' (a, Y) = X (Y) 
x+ = g, = 0, a,+ = 1, co+ = 0, A = a,,- 

in (1.9), and we obtain two equations to determine the desired functions x,I~_ by satisfying 
the boundary condition (1.11) as well as the first condition from (1.10). 

NOW, let a = a,, i.e., the range of variation of the variable x in (0.1) and the range 
in which the Sturm-Liouville boundary value problem (0.3) is given, coincide. Meanwhile, if 
the mixed conditions still go over into just one U,[u]= g(Y), b, <y Q b,, then we should set 

n+ = a,,-'p (a,)K' (al&), g_ = g, x+ = 0, n- : 0 

in (1.9), and only the function q_(x) remains unknown. We obtain its integral equation by 
satisfying the first condition from (1.10). 

Remark 1, The parts of the series (improper integrals) not absolutely or weakly con- 
vergent should first be extracted and summed (evaluated) in realizing the conditions (1.10) 
and their particular cases by using (0.2) and (1.9). 

Moreover, all the constructions performed evidently go over into the case when (0.1) is 
inhomogeneous or when the boundary condition on the boundary z= a,, does not agree with the 
corresponding condition of the Sturm-Liouville problem, as well as the case when there are 
slits and point inclusions within the domain /ll/. 

2, We illustrate the above by the following antiplane problem of the theory of elastic- 
ity for a half-plane (O<s<oo,-00 <Y<co) with a slit along the segment Y == 0, 0 <x< a. 
Rigid stamps with flat bases are glued to symmetric segments -b < y<O, O<y < b of the 
elastic half-plane boundary (z = 0) . These stamps are subjected to longitudinal shear in 
opposite directions of the same quantity 6. It is required to find the stress distribution 
in the half-plane. 

Since the line Y = 0 is an axis of skew symmetry for the longitudinal displacements ~(5, 
y) of points of the half-plane, the problem posed can be formulated in the form of the fol- 

lowing mixed boundary value problem for a quadrant: 

u'r + a" _ 0 (0<s<00,-03<Y<~) 

u (0, y) = -6 (0 < y < b), a' (0, Y) == 0 (b < Y < m) 

U' (5, 0) = 0 (0 < 5 < a), a (5, 0) = 0 (a d z-=E m) 
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It is here taken into account that the desired stresses are determined by the formulas (!I is 

the shear modulus) 

r.<z ~-: uu' (.r, Y), TUZ II"' Cr., Y) (2.4) 

If as above, the integral transform in the variable J is kept in mind in the case under 

consideration, the second boundary condition on the boundary .r ~ 0 will correspond to the 

Fourier cosine transform 
h 

Q(Y)= 5 
," 

cosh.ru (1., ?/)ClJ, U= 7 Llh(Y)COS hxdh 
I (2.5) 

" " 

which we shall indeed use to reduce the formulated two-dimensional boundary value problem to 

a one-dimensional problem by predefining the boundary condition mentioned by using an unknown 

function (the contact stress under the stamp) X_ (Y) - 't (Y) which possesses the property 

X_ (Y) .- r (Y) = 0 (b < Y < m) on the whole boundary 5 = 0, i.e. 

U' (0, y) z= Qr (y) (0 . : y < W) (2.6) 

Subsequent multiplication of (2.1) by cos~x, integration by parts over the semi-axis (0. cu) 
and using (2.5) and (2.6) result in the equation 

-l&j, +- h%$, -_IL-‘T (y) (0 < y < @J) (2.7) 

As this follows from the general scheme elucidated above, there are two versions for ascribing 

boundary conditions to (2.7). In the case being examined these variants are determined by 
which of the conditions in (2.3) is predefined on the whole boundary. Let us predefine the 

second condition from (2.3) 

U (r,O) :: (I (5) (0 < 5 < c=) (2.8) 

by introducing the function Q+(X) =- ($ (x), which is different from zero in a finite interval 

(Q, 5 rp c 0, ~>a). Predefinition of the first condition from (2.3) in this case is less conven- 
ient since it results in a desired function different from zero in a semi-infinite interval. 

Application of the transform (2.5) to (2.4) results in the following boundary value con- 

dition for (2.7): 

UA (0) = (Ph (CFh = j,os hE cp (9 dEj 
” (2.9) 

Having used the funadmental function /ll/ 

e& (Y -. lj) = (2h)-'@v-% 

to construct the Green's function 

G (Y, 11) = Q (Y - 9) - eh (Y + 11) 

(2.10) 

(2.11) 

of the boundary value problem (2.7), (2.9), we find its solution by means of the formula 

which is the analog of (1.9). 

To execute further computations, it is convenient (compare with /ll/) to transform (2.9) 

for (pl to the following by integration by parts: 

Keeping this as well as (2.10) and (2.11) in mind, we can write on the basis of (2.12) 

(2.13) 

Hence, by using the inversion formula from (2.5) and evaluating the known improper integrals 

(comparewith /11/J, we obtain 

(2.14) 
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A formula for the derivative u' (x,y) in whose terms the stress rri is expressed accord- 
ing tQ (2.41, can be obtained analogously. 

To obtain the system of integral equations governing the functions Z(V)) and 'p' (E), the 
first condition from (2.2) should be realized by writing it in the form ~‘(0, y) : 0 (0 <Y G 0). 
and the first condition from (2.3). Having used (2.14) for this purpose, we obtain the requir- 
ed system of integral equations 

In the case b = a this system is reduced to separately selvable (explicitly) singular 
integral equations by using addition and subtraction. The arbitrary constants in their solu- 
tions are found from the condition of integrability of the functions ~(11) and r+'(E), as well 
as from the following easily verifiable condition 

Consequently, the solution of the system (2.151 for b = a is written in the form 

3, The constructions elucidated are even applicable in the case of boundary value probl- 
ems for higher order equations then the second, and for systems, too. Let us illustrate this 
by an example of the first fundamental problem of plane elasticity theory for a rectangular 
domain (-a ,<~<a,-n <~<nn). The interval (-n,n) is used to shorten the formulas. For 
this same reason we limit ourselves to the case when there is no load on the boundariesy =&3t, 
while an identical tensile load p(y) = p(--y) acts on the boundaries x=*a. The problem 
posed is equivalent to the following boundary value problem for the Airy function u(x, IJ): 

(3.1) 

(3.2) 

(3.3) 
We note that the boundary conditicns (3.3) are satisfied if 

u (x, *n) = 0 U’ (2, _c nj == 0 
Let US note that the functionp(y)iseven by assumption, 

function in the variable y, and we use the finite Fourier 
y to solve the boundary value problem (3.1)- (3.4) 

(3.4) 

then u(x,y)will also be an even 
cosine transform in the variable 

To do this we multiply the differential equation (3.1) by COSICY and integrate by parts.Taking 
account of the evenness of the function u in y and the boundary conditions (3.4), results in 
the equation 

In the same manner the 

(3.5) 

L,@L* = u*fV - 2kaue” + k*uz = f (z) (Jsl < a) 

(1 (4 = (-++‘x (4, x (x) = a*** (x, fn)) 
(3.61 

boundary conditions (3.2) are converted to the form 

%(a) = U,* [Uk] = -k'J+, Itk (-U) = ur* jU& = -k-*ppx 

&'(a) = u,* [&I = 0, sk' (-fl) = u$* [&‘h_] = 0 

(3.7) 

We construct the Green's function of the boundary value problem (3.6) and (3.7) by the 
scheme mentioned in /ll/, and according to which it is determined by the formula 
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where $, = 9, (x) (m = 0, 1, 2, 3) is the basis system of functions 

2qo (5) =: c, (kr) + c_ (kc) $ c+ (-AZ) - c_(-kz) 

-2kljz2 (z) == c,’ (ks) + c_’ fkz) + c,’ (As) - c_’ (-As) 

$I (5) == +& (--;c), $3 (I) =-~. -I& (-CL-) 

c* (sf = (sh 2a & 24-’ [ph (a + z) + (a - zc) eh (a -k ~$1, 
a = ilk 

which, as is easily verified, possesses the property 

u,+1$J = s,,, Lj& = 0 (m, n = 0, 1, 2, 3) 

Using the Green's function and basis system constructed, the solution of the boundary 
value problem (3.6) and (3.7) can be written in the form /11,12/ 

nk z (- I)“+” fk (J, 5) x (9 G - -g- t+o (4 3 II1 (41 (3.8) 
0-a 

using the inversion formula from (3.5) and summing the weakly converging series (compare 
with /II/), we find the function u(x,y), and use it to find the stresses expressed in terms of 
the desired function x(E). In particular, we will have (x($,) - x.(--E)) 

4n~(~,j,y)--(s-~f{lz-~l-lnL2ch~;r-~~-~ 

2 CDS yl) -t s, (2, E) - s, (-5, -3 

s, (IL, u) = (u - v) In 12 ch (2~ - u - v) + 2 cos yl 4 

2 (a - n)(a - u) sh (2a - u - u) Ich (2a - u - u) Jr- cos yP 

Q (x, y) = $2 c+’ (kr) -2’ (- kr) ph. cos ky 
,i .w* 

ud’ (XT) = 
--l‘ 

jj (x,g, y) is a function which is differentiable as often as desired with respect to all the 
variables but for which we do not present any expression. 

Having realized the first boundary condition from (3.3) by using (3.9), we obtain an in- 
tegraP equation to determine x(k). After differentiating both sides, it becomes singular with 
the following structure 

a 

S[ cth z.+fQq q3)_+$, q.q+ 
-a 

~1 (2, %)] x(E) dE = - 4nQ" (xv n) 

(1x1 < a, H (5, y) = 2h + (s - 5y)h’ - Zryh”, h = cth (z-l- y)) 

As above, R,(r, 5) here denotes a function which is arbitrarily differentiable with respect to 
both variables. 

As we see, the kernel of the equation has a fixed singularity on the edges of the domain 
of definition, in addition to a movable singularity. Let us note that an integral equation 
of analogous structure has also been obtained in /6/. 

4, Boundary value problems given in a rectangular domain (which can degenerate into a 
plane, a strip, a half-plane, etc.) were examined relative to the variables x,y which are 
not necessarily Cartesian. A method of transferring the classical scheme of the integral trans- 

form method to the case of more complicated domains, including multiconnected domains, is 

elucidated below. We again elucidate the idea in application to (0.11, but we pose the bound- 
ary value problem for a doubly-connected domain which is a rectangular domain a, z xi. n,. b, a:.. 
y.,, b, with an extracted rectangle of smaller size co<z<c17 ~TJ < .?4 <h,, i.e., a, :_; c0 <cI.{:, 

n,, b, :< h, < h, +, 0,. 
We take the boundary condition on the outer contour in the form 

Uj lUl --' 0 (ri, ._ y ' ~,,), l'j IlSl --- 0 (n, __ S a,) (4.L) 

The boundary functionals c:,,I, (j -0,l) contained here are defined in (0.3) and (0.4). We con- 
sider the following boundary conditions given on the inner contour: 
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Uj* IUI = ajo*u (Cjy Y) + ajl*U' Crjy Y) = Cj (Y) 
(i = 0, 1; h, < Y < h,) 

Vj* IuI = Bjo*u (5, hj) + @jl* u’ (~3 hi) 7 ffj (Y) 
(j =o, 1; Co<~SCJ 

(4.2) 

(4.3) 

Considering (0.1) also given in the domainc,<x<c,, h, < y<h,,we introduce the nota- 
tion for jumps in the function and its derivatives on the lines z=c and y=h: 

<u (G Y)> = 24 (c - 0, Y) - u (c + 0, Y) (4.4) 

(u (5, h)) = u (I, h - 0) - u (z, h + 0) 

Then, assuming the function u(x,y) continuous upon passing through the lines z = CJ and y = hi 

(i = 0, I) , and its normal derivative undergoes a break in continuity (another assumption is 
possible, continuity of the normal derivative and discontinuity of the function itself), we 
can write (j = 0, 1) 

<u(cJ* Y)> = 0, c”’ (cJ? !d> = XJ (id (h < Y < b,) (4.5) 

(n (5, hl)) = 0, <U' (5, hj)) = ‘?J (2) (% < 5 < a,) 
(4.6) 

where the unknown functions introduced should possess the property 

XJ (Y) = 0, Y ?E (ho, W, TJ (x) = 0, x c (%s, cl) 

We now apply the integral transform (0.2) to (0.1) and the second boundary condition from (4.1). 
As a result of executing the operations prescribed by the scheme in /ll/ and taking account of 
(4.5), we obtain the following one-dimensional boundary value problem for the transformants: 

LUA (Y) = - go no (cj) Xj (Y) PO -G Y d 61) (4.7) 

V, [uAl = 0 (j = 0, I) 
Application of the same transformation to the relations in (4.6) shows that the derivative of 
the solution for boundary value problem (4.7) at the points Y = hJ should undergo a break in 
continuity 

(U,S.‘(hj))=(P,;*v qJ\=iw Tj(S)dE (i= Ofi) (4.8) 
e, 

The solution of the discontinuous boundary value problem (4.7), (4.8) will be constructed in 
the form 

UL (y) = u?.o (Y) + u?. (Y) (&I d Y < b,) 
(4.9) 

where uko((y) is the continuous part of the solution expressed in terms of the Green's function 
G, (y, q)of the self-adjoint boundary value problem 

-@u' (Y))' + rl-r (Y) LA + Ql (Y)lU = f (Y) @cl < Y < b1) (4.10) 
VJ [d = 0, j = 0, 1 

by means of the formula 

and vL(Y) is the discontinuous part of the solution of the boundary value problem (4.7),(4.8). 
To find it, we first solve the following discontinuous boundary value problem 

- (pu')' + r-l (h + qJv = 0 (b, < y < b,), Vj 14 = 0 (4.12) 

with given jumps at the point y = h 

(u’ (h)) = ~1, <u (h)) = G, (4.13) 

A method to solve similar problems is proposed in /II/. Using the scheme elucidated there, 
we arrive at the following formula to solve the discontinuous boundary value problem (4.12), 
(4.13) after a number of manipulations 

v(y) = p (h) Is,G, (Y, h) - x,G,' (Y. h)l (4.14) 

The manipulations mentioned are not presented here because the validity of (4.14) is 
established easily by using the known properties /12/ of the Green's function for the self- 
adjointboundary value problem (4.10). By using (4.14) and the discontinuous part VI (Y) of 
the boundary value problem (4.71, we can now write (4.8) in the form 

VA(Y)=~$~ PI (hj)G* (~3 hj) (PjL (4.15) 

We obtain the solution of the initial boundary value problem expressed in terms of the unknown 
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functions lj(Y) and '/'j(X) by means of the transform found (4-i)), (4.11), (4.15) by using the 

inversion formula from (0.2). We obtain the system of integral equations for the determina- 
tion by demanding compliance with the boundary conditions (4.2) and (4.3). 

Remark 2, Here, as in Sect.1, Remark 1 remains valid. Moreover, the combination of 

what has been said here and in Sect.1 permits including the case of mixed boundary conditions 

on both the outer and inner contours. The elucidation above can be carried over to the case 

of higher order equations than (l.l), and also to systems. 

In the case of the presence of a point (z ~: c~,J, = h) to replace the boundary conditions on 
the inner boundary 3: ~- ~~,h,~‘!, .h, , say, not one, as in (4.5) above, but two jumps should be 

introduced: for instance, a jump in the function itself before the point of boundary condition 

replacement, and in its derivative after the point. 

5, Let us illustrate the use of the scheme in Sect.4 in such an antiplane problem for a 

half-plane (-cc <z< 00. 0 ...I Y( m) with a rectangular cutout --c< x<c,U :<Yy(11 filled 

with an absolutely stiff medium ( a deepened stamp), adhering completely (over the whole con- 
tour) to the elastic medium. The deepened stamp is subjected to the action of a given load 

shearing in the longitudinal direction. It is required to find the stress distribution inthe 
elastic half-plane with the cutout described. 

The problem posed is formulated mathematically in the form of equation (2.1) given in the 

quadrant (z.y, (1) with a rectangular cutout (0 :<z<c, 0 Z< Y(/I) and the following boundary 

conditions 

u' (0, Y) 0 (rl i y < co). u’ (Ic, 0) 0 (c c_ 5 < Lx) (5.1) 

U' (c, Y) 0 (I) C, Y <, I/), u' (z. h) 0 (0 _ I ;: c) (5.2) 

In conformity with the scheme of Sect.4 let us consider (2.1) given in the whole quadrant 

with the exception of the lines x C and Y I/ on which we give the jumps 

(u (r, Y)> ~ 0, <u' (c, Y)> L x (Y) (0 <Y < m) (5.3) 

<u (r. h)) 0, (u' (x, 12)) 7: 'p (5) (0 < I < c=J) (5.4) 

where 

Applying the integral transform (2.5) to (2.1), to the second condition from (5.1), as well as 

to (5.4), and taking (5.3) and the scheme of /ll/ into account here, we arrive at a one-dimen- 

sional discontinuous boundary value problem 

-Ukn + X%& -- cos hc x (y) (0 < y < co) (5.5) 

According to the scheme of Sect.4, to solve it, it is sufficient to construct the Green's fun- 

ction G, (Y, 11) I decreasing at 03, for the self-adjoint boundary value problem 

-UU (Y) +m A% (Y) f (Y) (0 < y < ce), u' (0) ~- 0 

It can be verified that this is the function 

G* (Y> 11) en (!/ - n) + Q. (Y + n) (5.6) 

where c&(r) is defined by (2.10). 

Using the Green's function constructed, we obtain the solution of the discontinuous bound- 

ary value problem (5.5) in the form 

4. (!/I = cm hc _J,,Q (Y - 11) x (II) drl -t 1% (Y - h) + % (Y + h)l cpr (5.7) 

The function x(y) is continued here in an even manner to negative values of the argument-using 
(5.7) and the inversion formula from (2.5), we find the function ~(5: y) and its derivative 

Substitution of the derivative of (5.7) under the integral sign in (5.8) and evaluation of the 
inteqral already encountered results in the formula 
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By using analogous operations we obtain the formula for u'(z,y) also. Using it together with 
(5.9), we realize condition (5.1). Consequently, we arrive at a system of singular integral 
equations h ? 

h 

S[ (z - c) x (rl) 
(z - C)% + (h - q)a + (z:“c,;~~;“,)2]~rl+ f {&+ 

--h --c 

[(X-E)" + 4h21-'(2- 5)) cp (E)Q=O (I"1 <cl 

In particular, by virtue of the symmetry of the problem we have cp(z)=x(z) for e= h, that 
results in one equation in x(z) which acquires the following form after evident changes of 
variables I . 1 SF i 1-t t--S -_ 

t---T + 0 + TZ (1 -f)” + 21 + (1 -T)’ -+ 1 3 x 
0 

The arbitrary constant which will be contained in the solution of this homogeneous singular 
integral equation is found from the equilibrium condition for the deepened stamp. 
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